
Chapter 14 Differentiation 2
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1. Variables x and y are related by the equation .𝑦 = 𝑙𝑛𝑥

𝑒𝑥

a. Show that .
𝑑𝑦
𝑑𝑥 = 1−𝑥 𝑙𝑛𝑥

𝑥𝑒𝑥

[4]

b. Hence find the approximate change in y as x increases from 2 to 2 + h, where h
is small.

[2]
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2. The number, B, of a certain type of bacteria at time t days can be described by

𝐵 = 200𝑒2𝑡 + 800𝑒−2𝑡.
a. Find the value of B when 𝑡 = 0.

[1]

b. At the instant when show that𝑑𝐵
𝑑𝑡 = 1200, 𝑒4𝑡 − 3𝑒2𝑡 − 4 = 0.

[3]

c. Using the substitution or otherwise, solve .𝑢 = 𝑒2𝑡, 𝑒4𝑡 − 3𝑒2𝑡 − 4 = 0

[2]
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3. It is given that for𝑦 = 𝑙𝑛(2𝑥3+5)
𝑥−1 𝑥 > 1.

a. Find the value of when x = 2. You must show all your working.𝑑𝑦
𝑑𝑥

[4]

b. Find the approximate change in y as x increases from 2 to 2 + p , where p is small.

[1]
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4. for𝑓: 𝑥 → 𝑒3𝑥 𝑥 ϵ ℝ

for𝑔: 𝑥 → 2𝑥2 + 1 𝑥 ≥ 0

Solve , giving your answer in the form , where a is an integer.𝑓'(𝑥) = 6𝑔"(𝑥) 𝑙𝑛 𝑎

[3]
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5. Two variables x and y are such that for𝑦 = 𝑙𝑛𝑥

𝑥3 𝑥 > 0.

a. Show that .
𝑑𝑦
𝑑𝑥 = 1−3 𝑙𝑛𝑥

𝑥4

[3]

b. Hence find the approximate change in y as x increases from e to e + h, where h is small.

[2]
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6. The variables x, y and u are such that and𝑦 = 𝑡𝑎𝑛 𝑢 𝑥 = 𝑢3 + 1.

a. State the rate of change of y with respect to u.

[1]

b. Hence find the rate of change of y with respect to x, giving your answer in terms of x.

[4]
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7. Given that find an expression for .𝑦 = 𝑠𝑖𝑛 𝑥

𝑙𝑛 𝑥2 , 𝑑𝑦
𝑑𝑥

[4]
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8. Differentiate with respect to .𝑡𝑎𝑛 3𝑥 𝑐𝑜𝑠 𝑥
2  𝑥

[4]
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9. It is given that .𝑦 = 𝑙𝑛(4𝑥2+1)
2𝑥−3

a. Find 𝑑𝑦
𝑑𝑥 .

[3]

b. Find the approximate change in y as x increases from 2 to 2+h, where h is small.

[2]
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10. It is given that 𝑦 = (1 + 𝑒𝑥2

)(𝑥 + 5).

a. Find 𝑑𝑦
𝑑𝑥 .

[3]

b. Find the approximate change in y as x increases from 0.5 to 0.5+p, where p is
small.

[2]

c. Given that y is increasing at a rate of 2 units per second when x = 0.5, find the
corresponding rate of change in x.

[2]
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11. The equation of a curve is given by 𝑦 = 𝑥𝑒−2𝑥.

a. Find 𝑑𝑦
𝑑𝑥 .

[3]

b. Find the exact coordinates of the stationary point on the curve 𝑦 = 𝑥𝑒−2𝑥.

[2]
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c. Find, in terms of e, the equation of the tangent to the curve at the point𝑦 = 𝑥𝑒−2𝑥 (1, 1

𝑒2 ).

[2]
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12. Given that show that where is a𝑦 = 2𝑠𝑖𝑛 3𝑥 + 𝑐𝑜𝑠 3𝑥, 𝑑2𝑦

𝑑𝑥2 + 𝑑𝑦
𝑑𝑥 + 3𝑦 = 𝑘𝑠𝑖𝑛 3𝑥, 𝑘

constant to be determined.
[5]
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